AP CHEMISTRY 2019-20

Naming Compounds and Acids Information

Chemical nomenclature (a fancy word for naming!) is crucial to success in AP Chemistry and is considered a basic skill. Students should know how to both name any compound – either ionic or molecular (aka covalent) – and given the name, should be able to write the correct formula. Students should also know how to name acids which is a topic that should be researched and learned. *Nomenclature rules should be reviewed, memorized, and practiced – either with a book or finding problems online.* The below list of polyatomic ions must be memorized. Remember that you will always have a periodic table available!

List of Polyatomic ions – These should be memorized. Students will need to know them all year long

Table of Common Polyatomic Ions			
Ion Formula	Name	Ion Formula	Name
${\rm Hg_2}^{2+}$	Mercury(I)	SCN ⁻¹	Thiocyanate
$\mathrm{NH_4}^{+1}$	Ammonium	CO_3^{2-}	Carbonate
C ₂ H ₃ O ₂ ⁻¹ or CH ₃ COO ⁻¹	Acetate	CrO ₄ ²⁻	Chromate
CN ⁻¹	Cyanide	$\text{Cr}_2\text{O}_7^{2-}$	Dichromate
H ₂ PO ₄ ⁻¹	Dihydrogen Phosphate	HPO ₄ ²⁻	Hydrogen Phosphate
OH ⁻¹	Hydroxide	$C_2O_4^{2-}$	Oxalate
HCO ₃ -1	Hydrogen Carbonate	O ₂ ²⁻	Peroxide
NO ₃ -1	Nitrate	SO ₃ ² -	Sulfite
NO_2^{-1}	Nitrite	SO ₄ ² -	Sulfate###
ClO ⁻¹ or OCl ⁻¹	Hypochlorite	$S_2O_3^{2-}$ PO_3^{3-}	Thiosulfate
ClO ₂ -1	Chlorite	PO ₃ ³ -	Phosphite
ClO ₃ -1	Chlorate***	PO ₄ ³⁻	Phosphate
ClO ₄ -1	Perchlorate		
MnO_4^{-1}	Permanganate		

^{***}NOTE that bromine (Br) and other halogens will form similar oxyanions (for example, BrO_3^- is the bromate ion and BrO_2^- is the bromite ion)

Helpful Info about Transition Metals – Most transition metals have the capability of forming more than one possible cation – thus the need for roman numerals when naming compounds. BUT there are FOUR transition metals that only form ONE cation given the opportunity, and these should be memorized. They are:

^{###}NOTE that selenium (Se) and other atoms in the same family as sulfur will form similar oxyanions (for example, SeO₄²⁻ is the selenate ion)